LEBANESE AMERICAN UNIVERSITY

School of Arts and Sciences Division of Computer Science and Mathematics Spring 2007

CSC243 : Introduction to Object Oriented Programming

(Lecture: MWF 09:00, BB1003 and Lab: M 16:30 – 19:30, Sage 110)

Instructor: Dr. Sanaa Sharafeddine

<u>E-mail:</u> sanaa.sharafeddine@lau.edu.lb

Office: BB 1516

Tel. Extension Number: 1807

Office Hours: MWF 11:00 – 13:00

Catalog Description

This course introduces the fundamental concepts of programming from an object-oriented perspective. Topics include introduction to the object-oriented paradigm: abstraction, objects, classes, methods, parameter passing; encapsulation, inheritance, polymorphism; fundamental programming constructs: variables, types, expressions, and assignment; simple I/O; conditional and iterative control structures; structured decomposition; fundamental data structures: primitive types, arrays, strings and string processing; implementation strategies for algorithms; debugging strategies; and the concept and properties of algorithms.

Purpose

To introduce students to the fundamental concepts of programming from an object-oriented perspective and to enable them develop skills in designing and developing simple computer programs.

Objectives

The objectives of this course are to give students:

- 1. The principles of problem solving and of good program implementation and testing
- 2. The fundamentals of object oriented programming
- 3. The basic skills needed to write computer programs in Java
- 4. The basic background in programming that will form the foundation for more advanced courses in computer science

Learning Outcomes

At the end of this course, students will learn:

- Develop algorithms to design a solution to a problem
- Software reuse by using Java class libraries or APIs
- Use the JAVA syntax and semantics to express their solutions to programming problems and implement a design using appropriate data types, control structures, methods, objects and classes
- Apply simple testing and debugging strategies to identify software faults
- Use input and output statements
- Declare primitive types variables and use dynamic memory allocation, e.g., new, to create new objects

- Write and call static and nonstatic methods and use parameter passing involving both primitive and reference types
- Formulate complex logical and arithmetic expressions involving multiple operators
- Implement control structures like simple or nested selection and repetition statements
- Design and implement new classes and simple ADTs incorporating multiple primitive instance variables and reference instance variables, with appropriate constructor, accessor and modification methods
- Use arrays to store data in and retrieve data from lists and tables of values
- Declare and manipulate multidimensional arrays
- Search for a given value in an array using various searching algorithms: linear search and binary search
- Sort arrays using various sorting algorithms: iterative selection and bubble sort
- Understand basic concepts of inheritance and polymorphism
- Understand how and when to use inheritance and polymorphism
- Learn how to program in a development environment and how to use the integrated tools to compile, run and debug a program

Lecture Material and Schedule

No. of lectures	Торіс	Chapter
2	Introduction to computers and programming languages	1
4	Introduction to Java applications	2
6	Object-oriented programming: classes and objects	3
9	Control statements: selection and repetition statements	4-5
6	Implementing and using methods	6
6	Arrays	7
3	Searching and sorting algorithms	handouts
2	Classes and objects: encapsulation and data abstraction	8
2	Inheritance and Polymorphism	9-10
_	Graphical user interface (time permitting)	

Teaching Method Lectures; lab tutorials and assignments

Textbook Deitel and Deitel. Small Java: How to Program. 6th Ed., Prentice Hall 2005

Grading Policy	Participation	3%
	Lab Assignments	12%
	Quiz I (Week 6)	25%
	Quiz II (Week 11)	25%
	Final Exam	35%

Policy on Cheating

Students caught cheating on an exam receive a grade of zero on the exam in their first cheating attempt in the course and receive a warning. Students caught cheating for the second time in the same course will receive a grade of "F" in the course and a second warning.

University Attendance Policy

Missing one third of classes implies that you will have to drop the course.

<u>Remarks</u>

- <u>Participation</u>: This includes class attendance. You are responsible for the work done and for the announcements made during your absence. You get 3 for less than two absences, 2 for two and three absences, 1 for four and five absences, and 0 for more than 5 absences. In case you have a valid excuse for not attending a class session, you have to send the instructor an email <u>within three days</u> to explain your case.
- <u>Make-ups and Incomplete</u>: Students are not automatically entitled to make-ups; F will be given until reasons (in writing) are presented and approved. Students should present their reason <u>within one week after the exam date</u> otherwise it will not be accepted.